DAMAGE DETECTION OF BRIDGE STRUCTURES IN TIME DOMAIN VIA ENHANCED COLLIDING BODIES OPTIMIZATION
Authors
Abstract:
In this paper, a method is presented for damage detection of bridges using the Enhanced Colliding Bodies Optimization (ECBO) utilizing time-domain responses. The finite element modeling of the structure is based on the equation of motion under the moving load, and the flexural stiffness of the structure is determined by the acceleration responses obtained via sensors placed in different places. Damage detection problem presented in this research is an inverse problem, which is optimized by the ECBO algorithm, and the damages in the structures are fully detected. Furthermore, for simulating the real situation, the effect of measured noises is considered on the structure, to obtain more accurate results.
similar resources
OPTIMAL DESIGN OF JACKET SUPPORTING STRUCTURES FOR OFFSHORE WIND TURBINES USING ENHANCED COLLIDING BODIES OPTIMIZATION ALGORITHM
Structural optimization of offshore wind turbine structures has become an important issue in the past years due to the noticeable developments in offshore wind industry. However, considering the offshore wind turbines’ size and environment, this task is outstandingly difficult. To overcome this barrier, in this paper, a metaheuristic algorithm called Enhanced Colliding Bodies Optimization...
full textVISCOUS DAMPER PLACEMENT OPTIMIZATION IN CONCRETE STRUCTURES USING COLLIDING BODIES ALGORITHM AND STORY DAMAGE INDEX
Dampers can reduce structural response under dynamic loads. Since dampers are costly, the design of structures equipped with dampers should make their application economically justifiable. Among the effective cost reduction factors is optimal damper placement. Hence, this study intended to find the optimal viscous damper placement using efficient optimization methods. Taking into account the no...
full textCOMPUTER CODES FOR COLLIDING BODIES OPTIMIZATION AND ITS ENHANCED VERSION
Colliding bodies optimization (CBO) is a new population-based stochastic optimization algorithm based on the governing laws of one dimensional collision between two bodies from the physics. Each agent is modeled as a body with a specified mass and velocity. A collision occurs between pairs of objects to find the global or near-global solutions. Enhanced colliding bodies optimization (ECBO) uses...
full textHYBRID COLLIDING BODIES OPTIMIZATION AND SINE COSINE ALGORITHM FOR OPTIMUM DESIGN OF STRUCTURES
Colliding Bodies Optimization (CBO) is a population-based metaheuristic algorithm that complies physics laws of momentum and energy. Due to the stagnation susceptibility of CBO by premature convergence and falling into local optima, some meritorious methodologies based on Sine Cosine Algorithm and a mutation operator were considered to mitigate the shortcomings mentioned earlier. Sine Cosine Al...
full textANALYSIS AND DESIGN OF WATER DISTRIBUTION SYSTEMS VIA COLLIDING BODIES OPTIMIZATION
This paper describes the application of the recently developed metaheuristic algorithm for simultaneous analysis, design and optimization of Water Distribution Systems (WDSs). In this method, analysis is carried out using Colliding Bodies Optimization algorithm (CBO). The CBO is a population-based search approach that imitates nature’s ongoing search for better solutions. Also, design and cost ...
full textOPTIMIZATION OF VERTICAL ALIGNMENT OF HIGHWAYS IN TERMS OF EARTHWORK COST USING COLLIDING BODIES OPTIMIZATION ALGORITHM
One of the most important factors that affects construction costs of highways is the earthwork cost. On the other hand, the earthwork cost strongly depends on the design of vertical alignment or project line. In this study, at first, the problem of vertical alignment optimization was formulated. To this end, station, elevation and vertical curve length in case of each point of vertical intersec...
full textMy Resources
Journal title
volume 6 issue 2
pages 211- 226
publication date 2016-06
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023